
Python unit
testing and mocking

Write tests first, then code.

Python unit testing

Prior to circa Python 2.6/7, module unittest2 held the modern
functionality needed. Module unittest is all that’s needed.

Python unittest is “me-too” in the world of xUnit. (This is a very big world;
everybody does it: Java, C#, even C/C++.) So unit test customs and practices
are well known and understood.

Python unit testing

It appears to exist for Python 2.6 on our appliances

Python 2.6.6 (r266:84292, Jan 22 2014, 09:42:36)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux 32

>>> import unittest

>>> dir(unittest)

[‘FunctionTestCase’, ‘ TestCase’, ‘TestLoader’, ‘TestProgram’,
‘TestResult’, ‘TestSuite’, ‘TextTestRunner’, ‘_CmpToKey’,
‘_TextTestResult’, ‘_WriteInDecorator’, ‘__all__’, ‘__author__’,
‘__builtins__’, ‘__doc__’, ‘__email__’, ‘__file__’, ‘__metaclass__’,
‘__name__’, ‘__package__’, ‘ __unittest__, ‘__version__’, ‘_makeLoader’,
‘_strclass’, ‘defaultTestLoader’, ‘findTestCase, ‘getTestCaseNames’,
‘main’, ‘makeSuite’, ‘os’, ‘sys’, ‘time’, ‘traceback’, ‘types’]

Python unit testing -- nose

Nose is a superset of unittest and exists for Python 2.6 just as unittest.

Mostly, nose improves test discovery and that’s what PerfectSearch appears
to use it for.

So unittest should be acceptable as it’s not incompatible or even different,
it’s not “either-or.”

Python unit testing

There are:

● module set-up and tear-down (@classmethod)
● test case set-up and tear-down
● test cases

unittest basics
import unittest

class XyzTest(unittest.TestCase): # (inherits Python unit test framework)

def testThing(self): # (one test case)

x = 9

self.assertTrue(x == 9)

if __name__ == '__main__': # (so this can be run from the command line)

unittest.main()

unittest set-up and tear-down
class XyzTest(unittest.TestCase):

def setUp(self):

self.havingFun = True

def tearDown(self):

self.havingFun = False

def testHavingFun(self):

self.assertTrue(self.havingFun)

Works no differently from an ordinary Python class (self, etc.).

unittest set-up and tear down
(class-level)
class XyzTest(unittest.TestCase):

@classmethod

def setUpClass(XyzTest):

create a test file on /tmp, etc.

 (XyzTest.fd, XyzTest.path) = tempfile.mkstemp()

 os.write(XyzTest.fd, 'something useful')

 os.close(XyzTest.fd)

@classmethod

def tearDownClass(XyzTest):

clean test file from /tmp, etc.

os.remove(XyzTest.path)

No self possible here! If you need a “global” variable, use class name.

unittest One last, useful goodie...
class XyzTest(unittest.TestCase):

 @unittest.skip('This is broken for now.')
 def testMethod(self):
 pass

Test-driven development (TDD)

Short and crude:
TDD is you writing a tiny bit of test that fails, fixing
that failure, then writing another test that fails.

TDD in Python is little different from any other language.
It requires mastery of unit test idiom.
Mocking is extremely useful in focusing on real problem.
Hamcrest BDD* idiom available in Python, but not
necessary.

(*) Behavior-driven development

Python mocking

Most of Python 3 mocking is supported in Python 2.6 and
2.7

Mocking is a simple concept that appears complicated on
the outside.

Subject under test (SUT), the class or module being
tested, usually, its instantiated object.

Unit-testing/mocking terminology

Fakes are objects with working, but a very minimal or zero-grade
implementation. (Okay, that’s easy.)

Stubs provide canned answers to calls made by the SUT usually not responding
in any way to details outside their intended purpose. (Hmmm…, sure.)

Mocks are objects with pre-programmed expectations forming a specification
of calls they are expected to receive from the SUT. (Aargh!)

Fakes and stubs replace functionality the SUT consumes, mocks do not.

(Well, not exactly, wait for it…)

Fake example (1), auth_conditions
class InRole: class nullAuthorize(object):

 def __init__(self, role): def __init__(self, arg1=None, arg2=None):

 self.roles = role self.arg1 = arg1

 pass self.arg2 = arg2

 def check(self): def __call__(self, function):

 return True def innerFunction(*args, **kwargs):

 def __call__(self, aList): return function(*args, **kwargs)

 pass return innerFunction

 def authorize(valid, handler=None):

 def _authorize(func, self, *args, **kwargs):

 return func(self, *args, **kwargs)

 return nullAuthorize(_authorize)

@authorize(InRole(['system', 'search']))

def putSet(self, sessionid, definitionname):

 payload = getRequestBody()

 ...

Fake example (2), pylons.request
class usage(object):

 def __init__(self):

 pass

 def write(self, message, append=False):

 if append:

 print 'LOG: ' + message

body = ""

params = {}

environ = {}

environ['psUsageLogEntry'] = usage()

Stub example, sessions
class SessionsController(object):

 def __init__(self):

 pass

 def showallsessions(self, sessionid=None):

 return '<sessions><session id="group_searchappliance@default" state="dormant" users...'

 def showsession(self, sessionid=None):

 return '<sessions><session id ...<sessionobj name="testSet" state="dormant" users="1">...'

Python mocking (okay, back to it!)

The Python world is less terminologically precise, everything’s called a mock;
patch is also used.

Aargh? Think of fake and stub. These replace actual production objects.
However, mocking is when you don’t write a special version of a production
class, but use a framework to wrap the real one and intercept particular uses.

Typically, a rule of thumb is never to mock something you do not

own. But, in Python mocking this is not held so much.

Mock example (1)
import unittest import os

import os

from jack import Jack class Jack(object):

 def removeMe(self, path):

class JackTest(unittest.TestCase) os.remove(path)

 def setUp(self):

 self.saveOsRemove = os.remove

 os.remove = myRemove

 def tearDown(self): (Brutal mocking here...

 os.remove = self.saveOsRemove ...not in fact using any framework.)
 def testCase(self):

 jack = Jack()

 jack.removeMe('/path/filename')

def myRemove(filepath):

 print 'Didn\'t actually try to remove', filepath

Mock example (2)
>>> from mock import Mock

>>> class Bar(object):

... def something(self):

... return 'something'

...

>>> bar = Bar()

>>> bar.something()

'something'

>>> bar.something = Mock()

>>> bar.something.return_value = 'foo'

>>> bar.something()

'foo'

Mock example (3)
>>> class Foo(object):

... def something(self):

... return 'something'

...

>>> foo = Foo()

>>> foo.something()

'something'

>>> foo.something = Mock()

>>> foo.something.side_effect = ['foo', 'bar', 'baz']

>>> foo.something()

'foo'

>>> foo.something()

'bar'

>>> foo.something()

'baz'

Mock example (4)
class Foo(object): >>> import foo

 def something(self): >>> foo = Foo()

return 'something' >>> foo.something = Mock()

>>> foo.something.side_effect = mySideEffect

def mySideEffect(*args, **kwargs): >>> foo.something(42)

 if args[0] == 42: 'foo'

return 'foo' >>> foo.something(43)

 elif args[0] == 43: 'bar'

return 'bar' >>> foo.something(-1, foo=7)

 elif kwargs['foo'] == 7: 'baz is shazaz'

return 'baz is shazaz'

Mock example (5)
class SetsTest(unittest.TestCase):

 @patch('searchui.controllers.sessions.SessionsController.showallsessions')

 def testGetWorld(self, showallsessionPatchedReturn):

 showallsessionPatchedReturn.return_value = loadFullShowAllSessionsReturn()*

 sets.getRequestBody = Mock()

 sets.getRequestBody.side_effect = [COMPOUND1_DEF, COMPOUND2_DEF]

 sessionid = 'session1'

 dfn = '__query1__'

 self.setsController.putSet(sessionid, dfn)

 assert(pylons.response.status_int == 200)

 dfn = '__query2__'

 self.setsController.putSet(sessionid, dfn)

 assert(pylons.response.status_int == 200)

 actual = self.setsController.getSets()

(*) eschewing showallsessions() stub in favor of special, local one

Python mocking problems

You must ensure you’re patching the object used by the SUT. This is not
always obvious. To make it more likely successful,

a. In production code (SUT), avoid using from … import as.
b. When accessing an object, use the full path to it.
c. In test code, perform import identically.

It’s sometimes easier to play small tricks. These influence production code,
but can also be a good thing. For example, your SUT consumes something
complex in a dependent module. Create a function that does this for the
class; mock that function from your test code. It’s easier, less brittle and a
bit self-documenting.

Python mocking problems

Mocking is inherently brittle.

This means that refactoring your code will necessarily entail a revamp of your
test code because it will be broken.

Often, however, your test code is broken in ways that you want to know
about anyway (unless it’s a total rewrite).

In short, when your test code blows up, it’s frequently a sign your
implementation has trouble as long as you tested behavior in the first place.

