
UNIX Authentication and
Pluggable-authentication Modules
(PAMs)

Russell Bateman

Description of UNIX authentication, PAM
authentication and configuration, how to make
an application "PAM aware," how to write a PAM
(sample code), comprehensive notes and
bibliography.

UNIX Authentication

● /etc/passwd: the good old days
– Need to change? simply edit

root:x:0:0:root:/root:/bin/bash
russ:x:1002:100:Rusell Bateman:/home/russ:/bin/bash

● MD5 and shadow passwords become popular
– applications had to code to different schemes
– to change schemes, recompile

Enter PAM!

PAM eliminates mess by enabling programs to
authenticate transparently, regardless of
scheme employed

PAM Authentication

● Sun's pluggable-authentication module
scheme

● Similar but not always identical between UNIX
and Linux, or even Linux and Linux

● Simply about “security”: no longer an applica-
tion's concern

PAM Authentication (continued)

● Makes life easier for application developer and
also for the system administrator

● Based on configuration files under system ad-
ministrator control

● Extensible to thumb readers, retina scanners,
devices that can measure evil intent via
brainwaves

Pictorial of PAM Framework

PAM API

ftp
telnet

login

UNIX

Kerberos
Smart-card

mechanisms

applications

Stacking PAMs

PAM

auth

login

UNIX
session

Kerberos
auth

UNIX
account

session account

PAM PAM

UNIX
auth

RSA
auth

application example

PAM Configuration

● Configuration done in files off /etc/pam.d

● One file per PAM-aware application

● (Some implementations use /etc/pam.conf)

PAM Configuration--Example

● Prohibiting SSH (secure shell) log-in

– PAM module, pam_time.so (ships with RedHat
or can be written); this module reads...

– ...file /etc/security/time.conf (used by
pam_time.so). This statement happens to direct
the behavior for SSH, but syntax is specific to
and arbitrary in pam_time.so:

sshd;*;*;!Al2200-0400 // services;ttys;users;times

PAM Configuration--Example
(continued)

– file /etc/pam.d/sshd:

#%PAM-1.0
account required pam_time.so*
auth required pam_stack.so service=system-auth
auth required pam_nologin.so
account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth
session required pam_limits.so
session optional pam_console.so

* if pam_time.so doesn't give sshd a green light, there
will be no SSH access by any account.

PAM Configuration (continued)

– the preceding example only applies to SSH (for
example, via PuTTY); it does not prohibit console
log-in, for example

– if it were useful to apply restrictions to the
console, say, lock it each day from 2200 until
0400, the same change could be made to
/etc/pam.d/login

PAM Stacking

● For more than one authentication restriction or
set of restrictions, PAMs may be “stacked” in
some implementations

● Stacked merely means that a given instance
may course through more than one PAM
implementing different aspects of the total
security solution on the host

● (see pam_stack.so in sample above)

PAM Defaults: the “other” File
● If a PAM-aware application has no

corresponding file on the path /etc/pam.d, the
“other” file (here in defaults) comes into play

#%PAM-1.0
auth required /lib/security/pam_deny.so
account required /lib/security/pam_deny.so
password required /lib/security/pam_deny.so
session required /lib/security/pam_deny.so

● This is frightful though, because if the
application's file goes somehow missing,
what's in “other” takes over and, by default,
the application stops working completely!

Potential Uses of PAM

● Black-list hosts whose number of bad log-ins
exceeds a threshold

● Prohibit access by vi to certain files

● Prohibiting removal of certain files with rm

● Licensing (simultaneous consumption, etc.)

Programming

Writing PAM-aware applications and PAMs

Making an Application “PAM-
aware”

● Initialization
– pam_start—initializes interface, reads

configuration file and yields a handle

● Termination
– pam_end—shuts down authentication stack,

causes module to call its clean-up, etc.

● Getting and setting items
– as for modules

PAM-aware Applications

● Authentication
– pam_authenticate

● Setting user credentials
– pam_setcred—called after authentication;

consists of a cookie like a Kerberos ticket or other
unique thing; onus of correctness and security on
application's shoulders

● Updating authentication tokens
– pam_chauthtok

PAM-aware Applications

● Miscellaneous
– pam_acct_mgmt
– pam_open_session
– pam_close_session
– pam_getenv
– pam_getenvlist
– pam_putenv

PAM-aware Applications

● What is expected of a PAM-aware application
– struct pam_conv—provide conversation structure

to module already initialized
– when module calls conv(), appdate_ptr is set to

second element of structure
– etc.

Sample Application Code

/*
** pam_demo.c
** Loop checking user/password pairs until "q"...
**
** Note: An application consuming pluggable-authentication module(s)
** (PAMs) links libpam.a and libdl.a and, in this case, at least, a
** helper library, libpam_misc.a.
*/
#include <stdio.h>
#include <string.h>
#include <security/pam_misc.h>
#include <security/pam_appl.h>

#define TRUE 1
#define FALSE 0

struct pam_conv gConv =
{

misc_conv, // convenient helper from pam_misc.h
(void *) NULL // 'appdata_ptr'

};

Sample Application Code
int main(void)
{

int err;
pam_handle_t *pamh;

while (TRUE) // loop until "q" typed...
{

char user[128];

printf("Enter log-in name: ");
gets(user);

if (stricmp(user, "q") == 0)
break;

if (err = pam_start("check_user", user, &gConv, &pamh)
!= PAM_SUCCESS)

{
printf("Authentication service failed to initialize...\n");
exit(err);

}

...

Sample Application Code
...
err = pam_authenticate(pamh, 0); // bonafide user?

if (err == PAM_SUCCESS)
err = pam_acct_mgmt(pamh, 0); // ...with access?

printf((err)
? "Authentication failed for %s...\n"
: "Authentication succeeded for %s...\n", user);

if (err = pam_end(pamh, err))
{

printf("Authentication service shutdown failed...\n");
exit(err);

}
}

return (err == PAM_SUCCESS) ? 0 : err;
}

Making a PAM
● Getting and setting instance data

– in general, PAMs should not make use of C static
– pam_set_data—initialization
– pam_get_data—retrieving the instance data

● Getting and setting PAM_ITEMS
– pam_set_item—initialization
– pam_get_item—retrieving the instance data

● Conversation mechanism
– allows the module to prompt for password

consistent with the application (command-line, X
Window dialog, etc.)

Making a PAM (continued)

● Getting user name
– pam_get_user—library macro function

● Getting and setting PAM environment variables
– pam_putenv
– pam_getenv
– pam_getenvlist

● Errors
– facilitate time delays following a failed call to

authenticate (hinders timed and brute-force
attacks)

– pam_fail_delay

Making a PAM (continued)

● What is expected of a PAM
– authentication (auth in configuration statements)

● pam_sm_authenticate
● pam_sm_setcred (set credential)

– account
● pam_sm_acct_mgmt

– session
● pam_sm_open_session
● pam_sm_close_session

– password
● pam_sm_chauthtok (change authorization token)

Sample Code
/* pam_checkuser.c
**
** A pluggable-authentication module (PAM) is a single executable
** binary file that can be loaded by the PAM interface library.
** This library is configured locally using a system file, either
** /etc/pam.conf or files off /etc/pam.d. The binary is stored on
** the path /usr/lib/security as a “special object” module (.so).
**
** Except for interacting with the user (entering a password, etc.),
** the PAM should not call the application directly. Instead, the
** documented "conversation mechanism" should be used.
*/
#include <stdio.h>
#include <security/pam_modules.h>

int pam_sm_authenticate
(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv

)
{
#pragma unused(flags,argc,argv)

int err;
const char *user;

Sample Code

// our caller doesn't tell us what this is, but PAM will...
err = pam_get_user(pamh, &user, NULL);

if (err != PAM_SUCCESS)
{

printf("pam_get_user: %s", pam_strerror(pamh, err));
return err;

}

if (!user || !*user)
{

printf("User name unknown--will not supply a default...\n");
return PAM_USER_UNKNOWN;

}

return PAM_SUCCESS;
}

...

Sample Code

...

int pam_sm_acct_mgmt
(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv)

{
#pragma unused(pamh,flags,argc,argv)

/*
** It's not yet abundantly clear what to do here in support of
** pam_demo.c. We would have to call into a UNIX authentication
** piece, or Kerberos, eDirectory, etc. depending on what we
** were trying to do.
*/
return PAM_SUCCESS;

}

...

Sample Code
...

/* --
** The remainder of this code does nothing except satisfy the caution
** that all six functions be supplied so that if called, they are
** extant. They are all, therefore, mere stubs that return success.
** --
*/
int pam_sm_setcred
(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv)

{
#pragma unused(pamh,flags,argc,argv)

return PAM_IGNORE;
}

likewise...
int pam_sm_chauthtok()
int pam_sm_open_session()
int pam_sm_close_session()

Bibliography (Webography)

● The Linux-PAM Writers' Manual and The
Application Developers' Manual
– http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/
– elucidates programming models for

● pluggable-authentication modules
● applications that consume pluggable authentication

● Modules/Applications available or in progress
– http://www.kernel.org/pub/linux/libs/pam/modules.html
– modules and applications whose source is

available (and links thereto)

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/
http://www.kernel.org/pub/linux/libs/pam/modules.html

Bibliography (Webography)
● User Authentication How-to

– http://www.faqs.org/docs/Linux-HOWTO/User-Authentication-HOWTO.html#AEN101
– useful discussion on UNIX/Linux user

authentication leading to PAM

● Lawrence, Tony, Understanding PAM
– http://aplawrence.com/cgi-bin/printer.pl?/Basics/understandingpam.html
– excellent conceptual treatment: PAM simplified

● ibid, SSH
– http://aplawrence.com/cgi-bin/nsrelated.pl?ssh
– obliquely related corral of SSH issues and

answers

http://aplawrence.com/cgi-bin/printer.pl?/Basics/understandingpam.html
http://aplawrence.com/cgi-bin/nsrelated.pl?ssh

Bibliography (Webography)

● Unified Login with Pluggable Authentication
Modules (PAM)
– http://www.opengroup.org/tech/rfc/rfc86.0.html
– RFC 86.0 (October 1995) itself

http://www.opengroup.org/tech/rfc/rfc86.0.html

Notes on PAM

Notes recorded in presentation for use in writing
a how-to or introductory document on PAM use

PAM Types

● account: provide account verification types of service: “Has
the user's password expired?” “Is this user permitted access
to the requested service?”

account modules check to ensure that authentication is allowed (account valid,
user authorized at current time, etc.).

● authentication: establish the user is who he claims to be
typically via challenge-response, but also via smart-card,
biometric device, etc.

auth modules provide the actual authentication and set credentials such as
group membership or Kerberos tickets.

● password: has the task of updating authentication
mechanisms including setting the password.

PAM Types (continued)

● session: covers things to be done prior to giving a service
and after withdrawing it including
– maintaining audit trails
– mounting account's home directory
– furnishing opening and closing hook by which module

affects the available services
– other tasks limited only by imagination.

PAM Control

● requisite: failure to authenticate via this module results in
denial of authentication to host.

● required: failure results in denial of authentication only if
subsequent modules also deny it.

● sufficient: if module successful, PAM grants authentication
even if a previous required module failed.

● optional: failure of this module is significant only if it is the
only of its type for this service.

Module Path

● The module path tells PAM which module to use for a given
type and where to find it

● If only module name (no path), look for module in PAM
module directory
– /etc/pam.d
– or /lib/security

● Some implementations put everything into one file,
/etc/pam.conf in which case, syntax is slightly different with
service prepended thus:

login auth required pam_unix.so nullok

Module Path (continued)

● Services that authenticate, but don't have a PAM module or
whose module isn't specified or is missing, have the “other”
configuration file imposed: /etc/pam.d/other

#%PAM-1.0
auth required pam_warn.so
auth required pam_deny.so
account required pam_warn.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_warn.so
session required pam_deny.so

Module Arguments

● Arguments to be passed to the module

● Arbitrary; belong to the module implementation

● E.g.: pam_unix.so:

auth required pam_unix.so nullok

– “nullok” indicates that a null password is acceptable

PAM Implementation Differences

● Redhat Linux uses pam_pwdb

● SuSE uses pam_unix

● FreeBSD does not support session directives

MD5...

...takes a message of arbitrary length and produces a
128-bit "fingerprint" or "message digest" of the input.
The conjectured is that it is computationally
infeasible to produce two messages with the same
message digest, or to produce any message having
a given prespecified target message digest.
Intended for digital signature applications where a
large file is "compressed" in a secure manner before
being encrypted with a private (secret) key under a
public-key cryptosystem such as RSA.

Kerberos...

...is a network authentication protocol for
client/server applications using secret-key
cryptography. A free implementation is
available from MIT.

